3.184 \(\int \frac{\tan ^3(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=54 \[ \frac{2 \sqrt{a \sec (c+d x)+a}}{a^2 d}+\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{a^{3/2} d} \]

[Out]

(2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) + (2*Sqrt[a + a*Sec[c + d*x]])/(a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0749947, antiderivative size = 54, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {3880, 80, 63, 207} \[ \frac{2 \sqrt{a \sec (c+d x)+a}}{a^2 d}+\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a \sec (c+d x)+a}}{\sqrt{a}}\right )}{a^{3/2} d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^3/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) + (2*Sqrt[a + a*Sec[c + d*x]])/(a^2*d)

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\tan ^3(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{-a+a x}{x \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{a^2 d}\\ &=\frac{2 \sqrt{a+a \sec (c+d x)}}{a^2 d}-\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+a x}} \, dx,x,\sec (c+d x)\right )}{a d}\\ &=\frac{2 \sqrt{a+a \sec (c+d x)}}{a^2 d}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{-1+\frac{x^2}{a}} \, dx,x,\sqrt{a+a \sec (c+d x)}\right )}{a^2 d}\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{a+a \sec (c+d x)}}{\sqrt{a}}\right )}{a^{3/2} d}+\frac{2 \sqrt{a+a \sec (c+d x)}}{a^2 d}\\ \end{align*}

Mathematica [A]  time = 0.069861, size = 56, normalized size = 1.04 \[ \frac{2 \left (\sec (c+d x)+\sqrt{\sec (c+d x)+1} \tanh ^{-1}\left (\sqrt{\sec (c+d x)+1}\right )+1\right )}{a d \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^3/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*(1 + Sec[c + d*x] + ArcTanh[Sqrt[1 + Sec[c + d*x]]]*Sqrt[1 + Sec[c + d*x]]))/(a*d*Sqrt[a*(1 + Sec[c + d*x])
])

________________________________________________________________________________________

Maple [A]  time = 0.147, size = 81, normalized size = 1.5 \begin{align*} -{\frac{1}{d{a}^{2}}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \sqrt{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\arctan \left ({\frac{\sqrt{2}}{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) -2 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x)

[Out]

-1/d/a^2*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*
(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.83357, size = 493, normalized size = 9.13 \begin{align*} \left [\frac{\sqrt{a} \log \left (-8 \, a \cos \left (d x + c\right )^{2} - 4 \,{\left (2 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} - 8 \, a \cos \left (d x + c\right ) - a\right ) + 4 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a^{2} d}, -\frac{\sqrt{-a} \arctan \left (\frac{2 \, \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, a \cos \left (d x + c\right ) + a}\right ) - 2 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{a^{2} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(a)*log(-8*a*cos(d*x + c)^2 - 4*(2*cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/
cos(d*x + c)) - 8*a*cos(d*x + c) - a) + 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)))/(a^2*d), -(sqrt(-a)*arctan(
2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + a)) - 2*sqrt((a*cos(d*x +
c) + a)/cos(d*x + c)))/(a^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan ^{3}{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**3/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)**3/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [B]  time = 10.1773, size = 134, normalized size = 2.48 \begin{align*} \frac{2 \,{\left (\frac{\arctan \left (\frac{\sqrt{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}{2 \, \sqrt{-a}}\right )}{\sqrt{-a} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{\sqrt{2}}{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )}}{a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

2*(arctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))/(sqrt(-a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1))
 - sqrt(2)/(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/(a*d)